
Linux System
Customization with BuildRoot

Julien Rollin
CTO TalanLabs

“Du bon code avec le bon sens”

—
Dev / CoachCraft / Cloud ready

What are we
talking about ?

say my name

“

Hardware system with
software that is designed to

perform a dedicated function,
either as an independent

system or as a part of a large
system

Two big families

◉ Microcontroller
○ do not have a memory management unit (MMU)
○ less complex / less power / cheaper
○ industry / automation / reliability

◉ Microprocessor
○ have a memory management unit (MMU)
○ general purpose / complex / designed for system
○ powerful / more expansive

Both have software with more or less abstraction to interact with hardware

Both have many versions…

Out of scope today

◉ Arduino, STM family
◉ RTOS, zephyr, etc
◉ etc

Linux System
for embedded

Linux history

◉ Open source system founded in
1991 par Linus Torvald

◉ huge community and contributor
◉ large hardware support
◉ tiny to huge computers
◉ security
◉ modularity

Linux architecture

System call

Device drivers

Pillars of embedded Linux

● Toolchain:
○ The compiler and other tools needed to create code for your

target device.
● Bootloader:

○ The program that initializes the board and loads the Linux kernel.
● Kernel:

○ This is the heart of the system, managing system resources and
interfacing with hardware.

● Root filesystem:
○ Contains the libraries and programs that are run once the kernel

has completed its initialization.

Toolchain

● Native:
○ This toolchain runs on the same type of system as

the programs it generates.

● Cross:
○ runs on a different type of system than the target
○ the development to be done on a fast desktop

sources image : Bootlin

Bootloader

◉ load hardware config
○ cpu, memory, etc

◉ load kernel
◉ execute kernel

Kernel Linux component

◉ Architecture code :
○ provides low-level routines for very basic (register manipulation,

synchronization primitives, etc.)
◉ Drivers :

○ ships drivers for every device supported by Linux in one source code
tree.

○ some are not useful for your usage
◉ Device tree :

○ explains to the kernel how hardware is actually connected to the
system.

○ are the “config files” for Linux drivers
○ driver will find the entry and set hardware

FileSystem

◉ directories and files are organized as a
hierarchy

◉ organize data in directories and files on storage
devices

◉ allows applications to access files and
directories easily

◉ / : root filesystem (first mounted)

◉ /bin: Basic programs
◉ /boot: Kernel images, configurations

and initramfs
◉ /dev Device files
◉ /etc System-wide configuration
◉ /home Directory for the users home

directories
◉ /lib Basic libraries
◉ /media Mount points for removable

media
◉ /mnt Mount points for static media

Filesystem directory hierarchy

◉ /proc Mount point for the proc virtual
filesystem

◉ /root Home directory of the root user
◉ /sbin Basic system programs
◉ /sys Mount point of the sysfs virtual

filesystem
◉ /tmp Temporary files
◉ /usr

○ /usr/bin Non-basic programs
○ /usr/lib Non-basic libraries
○ /usr/sbin Non-basic system

programs
◉ /var Variable data files, for system

services.

All blocks needed

“

How to build
a custom system ?

Building workflow

Top Down

◉ start with desktop Distribution
◉ remove unnecessary libs / apps

◉ complex (many shared library)
◉ still big

Bottom Up

◉ start with minimalist root filesystem
◉ add what needed

◉ easier maintenance
◉ small image

Many Options

◉ Manually with custom scripts

◉ Building tools : BuildRoot, Yocto

◉ distributions

custom config

BuildRoot

“

Our famous RaspberryPI

Desktop version

● Release date: January 28th 2022
● System: 64-bit
● Kernel version: 5.10
● Debian version: 11 (bullseye)
● Size: 1,135 GB

Raspberry Pi OS (64-bit)

OS Lite

● Release date: January 28th 2022
● System: 64-bit
● Kernel version: 5.10
● Debian version: 11 (bullseye)
● Size: 435MB

“

How to reduce size ?

Buildroot steps

◉ Choose target device
◉ Customize configuration
◉ Compiling the Linux kernel
◉ Copy Root filesystem to card
◉ Boot with new image

Reminder Embedded Linux System architecture

Not same architecture… need toolchain for cross building

X86 ARM

Toolchain with BuilRoot

◉ BuildRoot provides own toolchain
◉ Lib to compile C

○ uClibc is selected by default
○ other available:

■ glibc, musl, etc
■ depends on your apps

Nb: you can download binaries too if wanted

Choose Board config

◉ choose among thousands configs… (271)
○ raspberrypi3_64_defconfig

◉ generate config
○ make 0=../build-rpi3 \

 raspberrypi3_64_defconfig

◉ config is written to .config file

.config content file with preconfigured constants

Configuration

◉ kconfig format
○ same as linux kernel

◉ Store changes in .config

make menuconfig

Compile with make

Very long time first time ….
(activate cache in buildroot options)

compiled files

● device tree
○ *.dtb

● Kernel
○ Image

● bootloader :
○ rpi-firmware

● partitions
○ boot.vfat
○ rootfs.ext4

● Image to flash
○ sdcard.img

Copy image to flash card

see partitions on card with lsblk

or with GUI

screen to Connect to the Serial Console

sudo screen -fn /dev/ttyUSB0 115200

“

Demo time !

“

Tiny and Fast Linux system !

Need more customization

◉ change hostname
◉ add root password…
◉ add users
◉ add packages (more than 2600)
◉ add custom partitions
◉ …

“

Bonus !

The famous blink project !

Ground

pin 26

Rust to interact with Gpio

◉ crates HAL
○ Hardware Abstraction Layer (HAL) for

embedded systems
◉ crates RPPAL

○ Raspberry Pi Peripheral Access Library
○ controls the GPIO peripheral by

directly accessing the registers

Rust Cross Build

$ cargo install cross (docker based tool)

$ cross build --target=armv7-unknown-linux-musleabihf
--release

“

Not in BuildRoot…
How to add my App ?

custom root filesystem with custom scripts

script launched at startime

rust app release for arm

script content

“

Make to rebuild image
Copy to Sd card

“

Démo !

What next ?

◉ create custom package for BuildRoot
◉ Yocto as replacement for buildroot ?
◉ update over the air with certificates
◉ more performance and power efficiency
◉ more Rust :)

“

Merci !

Mastering Embedded Linux, Part 1:
Concepts • &> /dev/null

Mastering Embedded Linux, Part 3:
Buildroot • &> /dev/null

Créer un système complet avec
Buildroot

Bootlin training Buildroot

Framboise 314

Sources / références

https://www.thirtythreeforty.net/posts/2019/08/mastering-embedded-linux-part-1-concepts/
https://www.thirtythreeforty.net/posts/2019/08/mastering-embedded-linux-part-1-concepts/
https://www.thirtythreeforty.net/posts/2020/01/mastering-embedded-linux-part-3-buildroot/
https://www.thirtythreeforty.net/posts/2020/01/mastering-embedded-linux-part-3-buildroot/
https://www.blaess.fr/christophe/buildroot-lab/index.html
https://www.blaess.fr/christophe/buildroot-lab/index.html
https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf
https://www.framboise314.fr/

